Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473537

RESUMO

In this study, the effect of low-temperature oxygen plasma treatment with various powers of a titanium alloy surface on the structural and morphological properties of a substrate and the deposition of a tannic acid coating was investigated. The surface characteristics of the titanium alloy were evaluated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. Following this, the tannic acid coatings were deposited on the titanium alloy substrates and the structural and morphological properties of the tannic acid coatings deposited were subject to characterization by XPS, SEM, and spectroscopic ellipsometry (SE) measurements. The results show that the low-temperature oxygen plasma treatment of titanium alloys leads to the formation of titanium dioxides that contain -OH groups on the surface being accompanied by a reduction in carbon, which imparts hydrophilicity to the titanium substrate, and the effect increases with the applied plasma power. The performed titanium alloy substrate modification translates into the quality of the deposited tannic acid coating standing out by higher uniformity of the coating, lower number of defects indicating delamination or incomplete bonding of the coating with the substrate, lower number of cracks, thinner cracks, and higher thickness of the tannic acid coatings compared to the non-treated titanium alloy substrate. A similar effect is observed as the applied plasma power increases.

2.
Environ Microbiol Rep ; 16(1): e13225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146695

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by a wide range of microorganisms, including extremophiles. These unique microorganisms have gained interest in PHA production due to their ability to utilise low-cost carbon sources under extreme conditions. In this study, Halomonas alkaliantarctica was examined with regards to its potential to produce PHAs using crude glycerol from biodiesel industry as the only carbon source. We found that cell dry mass concentration was not dependent on the applying substrate concentration. Furthermore, our data confirmed that the analysed halophile was capable of metabolising crude glycerol into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer within 24 h of the cultivation without addition of any precursors. Moreover, crude glycerol concentration affects the repeat units content in the purified PHAs copolymers and their thermal properties. Nevertheless, a differential scanning calorimetric and thermogravimetric analysis showed that the analysed biopolyesters have properties suitable for various applications. Overall, this study described a promising approach for the valorisation of crude glycerol as a future strategy of industrial waste management to produce high value microbial biopolymers.


Assuntos
Glicerol , Halomonas , Ácidos Pentanoicos , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Biocombustíveis , Poli-Hidroxialcanoatos/química , Hidroxibutiratos , Carbono
3.
Sci Rep ; 13(1): 22289, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097607

RESUMO

Currently, the global demand for polyhydroxyalkanoates (PHAs) is significantly increasing. PHAs are produced by several bacteria that are an alternative source of synthetic polymers derived from petrochemical refineries. This study established a simple and more feasible process of PHA production by Halomonas alkaliantarctica using dairy waste as the only carbon source. The data confirmed that the analyzed halophile could metabolize cheese whey (CW) and cheese whey mother liquor (CWML) into biopolyesters. The highest yield of PHAs was 0.42 g/L in the cultivation supplemented with CWML. Furthermore, it was proved that PHA structure depended on the type of by-product from cheese manufacturing, its concentration, and the culture time. The results revealed that H. alkaliantarctica could produce P(3HB-co-3HV) copolymer in the cultivations with CW at 48 h and 72 h without adding of any precursors. Based on the data obtained from physicochemical and thermal analyses, the extracted copolymer was reported to have properties suitable for various applications. Overall, this study described a promising approach for valorizing of dairy waste as a future strategy of industrial waste management to produce high value microbial biopolymers.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Poli-Hidroxialcanoatos/química , Biopolímeros , Resíduos Industriais , Proteínas do Soro do Leite
4.
Materials (Basel) ; 16(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959520

RESUMO

Biocomposites based on polylactic acid (PLA), tall wheatgrass (TWG), and hemp (H) were made by injection molding. The article discusses the impact of the agrofiller content on the composite properties, including thermal (DSC, DMA, and TG) and mechanical characteristics (tensile modulus, tensile strength, and impact strength). Generally, the introduction of a plant filler into the polylactide matrix reduced the thermal resistance of the resulting composites. Plant fillers influenced primarily the cold crystallization process, probably due to their nucleating properties. The addition of fillers to the PLA matrix resulted in an increased storage modulus across all tested temperatures compared to pure PLA. In the case of a composite with 50% of plant fillers, it was almost 118%. The mechanical properties of the tested composites depended significantly on the amount of plant filler used. It was observed that adding 50% of plant filler to PLA led to a twofold increase in tensile modulus and a decrease in tensile strength and impact strength by an average of 23 and 70%, respectively. It was determined that composites incorporating tall wheatgrass (TWG) particles exhibited a slightly elevated tensile modulus while showcasing a marginally reduced strength and impact resistance in comparison to composites containing hemp (H) components.

5.
Materials (Basel) ; 16(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512427

RESUMO

Natural extracts of plant origin are used as anti-aging compounds of biodegradable polymers. Coffee, cocoa, or cinnamon extracts in amounts from 0.5 to 10 wt.% were added to the polycaprolactone matrix. The manufactured materials were aged at elevated temperatures with increased relative humidity and continuous exposure to UV radiation for 720, 1440, or 2160 h. The performance of the proposed extracts was compared with the retail anti-aging compound, butylated hydroxytoluene. Visual assessment, FTIR analysis, melt flow rate, tensile strength, impact tensile strength, thermogravimetry, and differential scanning calorimetry tests were conducted. Results showed that the use of lower contents of the tested extracts is particularly advantageous. When the content of the extract did not exceed 1 wt.%, no unfavorable influence on the properties of the materials was observed. The stabilizing performance during accelerated aging was mostly similar to or greater than that of the reference compound used.

6.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559703

RESUMO

The paper presents the results of the research on the possibility of using waste after the printing process as a filler for polymeric materials. Remains of the label backing were used, consisting mainly of cellulose with glue and polymer label residue. The properly prepared filler (washed, dried, pressed and cut) was added to the polypropylene in a volume ratio of 2:1; 1:1; 1:2; and 1:3 which corresponded to approximately 10, 5, 2.5 and 2 wt % filler. The selected processing properties (mass flow rate), mechanical properties (tensile strength, impact strength, dynamic mechanical analysis) and thermal properties (thermogravimetric analysis, differential scanning calorimetry) were determined. The use of even the largest amount of filler did not cause disqualifying changes in the determined properties. The characteristics of the obtained materials allow them to be used in various applications while reducing costs due to the high content of cheap filler.

7.
Front Bioeng Biotechnol ; 10: 951583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957637

RESUMO

Short- and medium-chain fatty acids (SMCFAs) derived from the acidogenic anaerobic mixed culture fermentation of acid whey obtained from a crude cheese production line and their synthetic mixture that simulates a real SMCFA-rich stream were evaluated for polyhydroxyalkanoate (PHA) production. Three individual Pseudomonas sp. strains showed different capabilities of growing and producing PHAs in the presence of a synthetic mixture of SMCFAs. Pseudomonas sp. GL06 exhibited the highest SMCFA tolerance and produced PHAs with the highest productivity (2.7 mg/L h). Based on these observations, this strain was selected for further investigations on PHA production in a fed-batch bioreactor with a SMCFA-rich stream extracted from the effluent. The results showed that PHA productivity reached up to 4.5 mg/L h at 24 h of fermentation together with the ammonium exhaustion in the growth medium. Moreover, the PHA monomeric composition varied with the bacterial strain and the type of the growth medium used. Furthermore, a differential scanning calorimetric and thermogravimetric analysis showed that a short- and medium-chain-length PHA copolymer made of 3-hydroxybutyric, -hexanoic, -octanoic, -decanoic, and -dodecanoic has promising properties. The ability of Pseudomonas sp. to produce tailored PHA copolymers together with the range of possible applications opens new perspectives in the development of PHA bioproduction as a part of an integrated valorization process of SMCFAs derived from waste streams.

8.
Materials (Basel) ; 15(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897589

RESUMO

The article presents research on the potential use of organometallic compounds with the addition of antimony (III) oxide Sb2O3 as a coating additive that will make coatings susceptible to electroless metallization after prior surface irradiation with 193 nm wavelength laser radiation and a different number of laser pulses. The surface modification and activation effects were assessed by optical-imagining as well as by scanning electron microscopy (SEM) with energy dispersive analysis (EDX). It was found that the presence of Sb2O3 in the coating made it possible to reduce the content of the copper complex, causing an intensive surface ablation, resulting in the formation of a conical structure with a higher content of metallic copper nuclei.

9.
Materials (Basel) ; 15(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806607

RESUMO

Polyhydroxyalkanoates (PHAs) production by Aeromonas sp. AC_01 was investigated using synthetic and waste derived short and medium chain fatty acids (SMCFAs). The obtained results revealed that the analyzed bacterial strain was able to grow and synthesize PHAs using SMCFAs. The highest PHA productivity was observed in the cultivation supplemented with a mixture of acetic acid and butyric acid (3.89 mg/L·h). Furthermore, SMCFAs-rich stream, derived from acidogenic mixed culture fermentation of acid whey, was found to be less beneficial for PHA productivity than its synthetic mixture, however the PHA production was favored by the nitrogen-limited condition. Importantly, Aeromonas sp. AC_01 was capable of synthesizing novel scl-mcl copolymers of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxytridecanoate (3HtriD) and/or 3-hydroxytetradecaonate (3HTD) with high 3HB and 3HV fractions. They were identified with alterable monomers composition depending on the culture conditions used. Moreover, in-depth thermal analyses proved that they are highly resistant to thermal degradation regardless of their monomeric composition. The obtained results confirm that Aeromonas sp. AC_01 is a promising candidate for the biotechnological production of PHAs from SMCFAs with thermal properties that can be tuned together with their chemical composition by the corresponding adjustment of the cultivation process.

10.
Sci Rep ; 12(1): 7263, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508573

RESUMO

The aim of this study was to evaluate an effect of short and medium chain carboxylic acids (CAs) rich stream derived from acidogenic mixed culture fermentation of acid whey on polyhydroxyalkanoates (PHAs) synthesis by Paracoccus homiensis and compare it with the impact of individual synthetic CAs. The obtained results confirmed that the analyzed bacterium is able to metabolize synthetic CAs as the only carbon sources in the growth medium with maximum PHAs production yields of 26% of cell dry mass (CDM). The replacement of the individual CAs by a CAs-rich residual stream was found to be beneficial for the Paracoccus homiensis growth. The highest biomass concentration reached about 2.5 g/L with PHAs content of 17% of CDM. The purified PHAs were identified as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by applying gas chromatography coupled with mass spectrometry, Fourier transform infrared spectroscopic spectra and UV-Vis spectra. Furthermore, a differential scanning calorimetric, thermogravimetric and water contact angle analysis proved that the extracted copolymers have useful properties. The obtained data are promising in the perspective of developing a microbial PHAs production as a part of an integrated valorization process of high CAs content waste-derived streams.


Assuntos
Paracoccus , Poli-Hidroxialcanoatos , Ácidos , Ácidos Carboxílicos , Meios de Cultura/análise , Cromatografia Gasosa-Espectrometria de Massas , Poli-Hidroxialcanoatos/metabolismo
11.
Materials (Basel) ; 14(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34885438

RESUMO

This paper presents results of a study on the effect of filler size in the form of 15 wt% corn stalk (CS) fibers on the mechanical and thermomechanical properties of polylactide (PLA) matrix composites. In the test, polylactidic acid (PLA) is filled with four types of length of corn stalk fibers with a diameter of 1 mm, 1.6 mm, 2 mm and 4 mm. The composites were composed by single screw extrusion and then samples were prepared by injection molding. The mechanical properties of the composites were determined by static tensile test, static bending test and Charpy impact test while the thermo-mechanical properties were determined by dynamic mechanical thermal analysis (DMTA). The composite structures were also observed using X-ray microcomputed tomography and scanning electron microscopy. In the PLA/CS composites, as the filler fiber diameter increased, the degradation of mechanical properties relative to the matrix was observed including tensile strength (decrease 22.9-51.1%), bending strength (decrease 18.9-36.6%) and impact energy absorption (decrease 58.8-69.8%). On the basis of 3D images of the composite structures for the filler particles larger than 2 mm a weak dispersion with the filler was observed, which is reflected in a significant deterioration of the mechanical and thermomechanical properties of the composite. The best mechanical and thermomechanical properties were found in the composite with filler fiber of 1 mm diameter. Processing resulted in a more than 6-fold decrease in filler fiber length from 719 ± 190 µm, 893 ± 291 µm, 1073 ± 219 µm, and 1698 ± 636 µm for CS1, CS1.6, CS2, and CS4 fractions, respectively, to 104 ± 43 µm, 123 ± 60 µm, 173 ± 60 µm, and 227 ± 89 µm. The fabricated green composites with 1 to 2 mm corn stalk fiber filler are an alternative to traditional plastic based materials in some applications.

12.
Materials (Basel) ; 14(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34832264

RESUMO

The paper presents the results of copper electroless metallization of cellulose paper with the use of a polydopamine coating and silver catalyst. The polydopamine coating was deposited via a simple dip method using a dopamine hydrochloride solution in 10 mM TRIS-HCl buffer with a pH of 8.5. The research showed that as a result of this process, cellulose fibers were covered with a homogeneous layer of polydopamine. The unique properties of the polydopamine coating allowed the reduction of silver ions from silver nitrate solution and the deposition of silver atoms on the paper surface. Deposited silver served as a catalyst in the autocatalytic electroless copper-plating process. The copper layer covered the entire surface of the paper sheet after 5 min of metallization, favorably affecting the electrical properties of this material by lowering the surface resistivity. The deposited copper layer was further characterized by good adhesive strength and high susceptibility to deformation.

13.
Molecules ; 26(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34577042

RESUMO

Polyurethane coatings containing copper(II) L-tyrosine and glass microspheres were laser irradiated and underwent electroless metallization. Various sizes of glass microspheres were incorporated into the polyurethane coating matrix in order to examine their effects on surface activation and electroless metallization. The surface of the coatings was activated by using ArF excimer laser emitting ultraviolet radiation (λ = 193 nm) using different number of laser pulses and their fluence. The effects of surface activation and metallization were evaluated mainly based on optical and scanning electron microcopies (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoelectron spectroscopy (XPS). It was found that the presence of glass microspheres enabled the reduction in copper complex content, intensified the ablation process (higher cone-like structures created) and resulted in higher content of copper metallic seeds. On the other hand, the glass microspheres concentration, which was higher for lower size microspheres, was advantageous for obtaining a fully metallized layer.

14.
Materials (Basel) ; 14(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361435

RESUMO

The aim of this article is to discuss in detail the physicochemical properties of polylactide (PLA) reinforced by cortex fibers, which may cause bacterial mortality and increased biodegradation rates. PLA biocomposites containing cortex Lapacho fibers from Tabebuia (1-10 wt%) were prepared by extrusion and injection moulding processes. The effects of Lapacho on the mechanical and biocidal properties of the biocomposites were studied using tensile and impact tests, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetry (TG), and the method of evaluating the antibacterial activity of antibacterial treated according to the standard ISO 22196:2011. It also presented the effects of Lapacho on the structural properties and biodegradation rates of biocomposites. This research study provides very important results complementing the current state of knowledge about the biocidal properties of Lapacho from Tabebuia plants and about cortex-reinforced biocomposites.

15.
Materials (Basel) ; 14(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669595

RESUMO

This paper presents a comparative assessment of Cu(acac)2 and {[Cu(µ-O,O'-NO3) (L-arg)(2,2'-bpy)]·NO3}n as potential precursors for the electroless metallization of laser activated polymer materials. Coatings consisting of polyurethane resin, one of the two mentioned precursor compounds, and antimony oxide (Sb2O3), as a compound strongly absorbing infrared radiation, were applied on the polycarbonate substrate. The coatings were activated with infrared Nd: YAG laser radiation (λ = 1064 nm) and electroless metallized. It was found that after laser irradiation, a micro-rough surface structure of the coatings was formed, on which copper was present in various oxidation states, as well as in its metallic form. For selected parameters of laser irradiation, it was possible to deposit a copper layer on the coating containing Cu(acac)2 and Sb2O3, which is characterized by high adhesion strength. It was also found that the {[Cu(µ-O,O'-NO3) (L-arg)(2,2'-bpy)]·NO3}n complex was not an effective precursor for the electroless metallization of Nd:YAG laser activated coatings. An attempt was made to determine the influence of the precursor chemical structure on the obtained metallization effects.

16.
Materials (Basel) ; 13(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408655

RESUMO

Selective metallization of polymeric materials using the technique known as laser direct structuring (LDS) is intensively developed. In this technique, metallized products can be manufactured by injection molding or by 3D printing process if rapid prototyping is need. Special additives present in the polymer matrix enable direct electroless metallization only on the surface which was laser activated. This paper presents the results of using copper microparticles introduced into the poly(acrylonitrile-butadiene-styrene) (ABS) matrix at various amounts (up to about 5 vol %). ABS was selected due to its good processing and mechanical properties and as one of the most common thermoplastics used in 3D printing. The influence of copper on structural, mechanical, and processing properties as well as on the effects of laser surface activation were determined. Two types of infrared lasers were tested for surface activation: Nd:YAG fiber laser (λ = 1064 nm) and CO2 laser (λ = 10.6 µm). Various irradiation parameters (power, scanning speed, and frequency) were applied to find suitable conditions for laser surface activation and electroless metallization. It was found that the composites tested can be effectively metallized using the Nd:YAG laser, but only in a narrow range of radiation parameters. Activation with CO2 laser failed, regardless of applied irradiation conditions. It resulted from the fact that ablation rate and thickness of modified surface layer for CO2 were lower than for Nd:YAG laser using the same irradiation parameters (power, speed, and frequency of laser beams), thus the laser wavelength was crucial for successful surface activation.

17.
Materials (Basel) ; 13(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121084

RESUMO

The results of studies on the uncrosslinked fraction of blends of polylactide and poly(butylene adipate-co-terephthalate) (PLA/PBAT) are presented. The blends were crosslinked by using the electron radiation and triallyl isocyanurate (TAIC) at a concentration of 3 wt %. Two kinds of samples to be investigated were prepared: one contained 80 wt % PLA and the other contained 80 wt % PBAT. Both blends were irradiated with the doses of 10, 40, or 90 kGy. The uncrosslinked fraction was separated from the crosslinked one. When dried, they were subjected to quantitative analysis, Fourier transform infrared spectroscopy (FTIR) measurements, an analysis of variations in the average molecular weight, and the determination of thermal properties. It was found that the electron radiation caused various effects in the studied samples, which depended on the magnitude of the radiation dose and the weight fractions of the components of the particular blends. This was evidenced by the occurrence of the uncrosslinked fractions of different amounts, a different molecular weight distribution, and the different thermal properties of the samples. It was also concluded that the observed effects were caused by the fact that the processes of crosslinking and degradation took place mostly in PLA, while PBAT appeared to be less susceptible to the influence of the electron radiation.

18.
Polymers (Basel) ; 12(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878118

RESUMO

Four types of rigid polyurethane-polyisocyanurate foams (RPU/PIR) were obtained. Three of them were modified by powder fillers, such as cinnamon extract (C10 foam), green coffe extract (KZ10), and cocoa extract (EK10) in an amount of 10 wt %. The last foam was obtained without a filler (W foam). The basic properties and thermal properties of obtained foams were examined. All foams were subjected to degradation in the climatic chamber acting on samples of foams in a defined temperature, humidity, and UV radiation for 7, 14, and 21 days. The physico-mechanical properties of foams were tested. The compressive strength of degraded foams after 7, 14, and 21 days was compared with the compressive strength of nondegraded foams (0 days). The chosen properties of degraded foams, such as cellular structure by scanning electron microscopy (SEM) and changes of chemical structure by FTIR spectroscopy were compared. The obtained foams were also subjected to degradation in a circulating air dryer in an increased temperature (120 °C) for 48 h. Additionally, W, C10, ZK10, EK10 foams were placed in a soil environment and subjected to 28 days biodegradation process. The biochemical oxygen demand (BOD), the theoretical oxygen demand (TOD), and the degree of biodegradation (Dt) of foams were determined in this measurment. Test results showed that the compressive strength of foams decreased with the longer time of foam degradation in the conditioner. The foam subjected to degradation darkened and became more red and yellow in color. The addition of natural compounds of plant origin to foams increased their susceptibility to biodegradation.

19.
Polymers (Basel) ; 11(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569774

RESUMO

The paper presents the effects of biodegradation of polylactide containing natural anti-aging compounds. Polymer containing 0.5; 5 and 10 wt % of coffee, cocoa or cinnamon extracts were subjected to industrial composting for 7, 14, 21 or 28 days. The effect of the composting process on polylactide properties was examined based on visual assessment, scanning electron microscopy, average molecular weight, differential scanning calorimetry, thermogravimetry, and tensile strength. The impact of the tested extracts on the effects of the composting process was compared with the impact of a commercially available anti-aging compound. It was found that the tested extracts in most cases did not adversely affect the effects of the composting process compared to pure polylactide, often resulting in intensification of biodegradation processes. As a result of the composting process, changes in the macro- and microscopic appearance of the samples and a decrease in molecular weight, phase transition temperatures, thermal resistance, and thermal strength were observed on a scale close to or greater than the reference anti-aging compound.

20.
Polymers (Basel) ; 11(4)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30960559

RESUMO

In this study, natural extracts of plant origin were used as anti-aging compounds of biodegradable polymers. Coffee (0.5⁻10 wt%), cocoa, or cinnamon extracts were added to the polylactide matrix. The obtained materials were subjected to an accelerated aging process (720, 1440, or 2160 h) at 45 °C and 70% relative humidity under continuous UV radiation. The effectiveness of the tested extracts was compared to a commercially available anti-aging compound, 2 wt% of butylated hydroxytoluene. Visual evaluation, scanning electron microscopy, melt flow rate, thermogravimetry, differential scanning calorimetry, tensile strength, and impact tensile tests were performed. We show that the use of smaller amounts of tested extracts is particularly advantageous, which do not adversely affect the properties of polylactide-based materials at low contents. At the same time, their effectiveness in stabilizing tested properties during the accelerated aging process is mostly comparable to or greater than the reference compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...